

Computational costs of WRF and WRF-Chem simulations

Negin Sobhani

National Center for atmospheric Research(NCAR)

WRF is a numerical weather prediction system designed for both atmospheric research and operational forecasting.

Community model with large user base:

 More than 30,000 users in 150 countries

- WRF scalability and MPI parallelism
- Identifying hotspots and potential areas for improvement in WRF and WRF-Chem
- Profiling some chemistry options

We NEED more cores (parallelism.)

General Considerations for Determining the Computational Costs

Question: "Is it possible to solve a problem with such-and-such resolution in a timely manner?"

- What is my available computational power (allocation)?
- How much storage do I have?
- How quickly do I need a solution?(Operational vs. retro runs)
- What horizontal and vertical and vertical resolution for my purpose?
- What schemes? What is the purpose of my simulations (e.g. Dust or Biogenic)
- How many cores?
 - If I use more cores I will have the results more quickly? (wrong)
- How large is any data set that you need to load?
- How much memory needs to be available for you to complete a run?

Computing Framework of WRF

Parallel computing terms -- hardware

Processor:

- A device that **reads and executes instructions in sequence to produce perform operations on data** that it gets from a memory device producing results that are stored back onto the memory device
- **Node**: One memory device connected to one or more processors.
 - Multiple processors in a node are said to share-memory and this is "shared memory parallelism"
 - They can work together because they can see each other's memory
 - The latency and bandwidth to memory affect performance
- **Cluster**: Multiple nodes connected by a network
 - The processors attached to the memory in one node can not see the memory for processors on another node
 - For processors on different nodes to work together they must send messages between the nodes. This is "distributed memory parallelism"

Network:

- Devices and wires for sending messages between nodes
- Bandwidth a measure of the number of bytes that can be moved in a second
- Latency the amount of time it takes before the first byte of a message arrives at its destination

From: Tutorial Notes: WRF Software Architecture by Michalakes and Gill

Scalability Assessment (MPI Only)

Domain Decomposition (MPI only)

Per Grid: 1/4 Computation and 1/2 MPI

From: Sobhani et al., AMS 2017

Intel Vtune Amplifier XE

- □ Intel profiling and performance analysis tool
- Profiling includes stack sampling, thread profiling and hardware event sampling
- Collect performance statistics of different part of the code

What makes WRF-Chem expensive?

Question: How many species/tracers?

Example o1 – Dust Chem_opt = 401 Dust Option = 1 GOCART

Total time: 132

Example o2 – Dust+Tracers Chem_opt = 301

Dust Option: 01 GOCART

Total time: 203

What makes WRF-Chem expensive?

Question: How many species/tracers?

Example o1 – Dust

Chem_opt = 401

Dust Option = 1 GOCART

Example o3 - Dust+ Tracers

Chem_opt = 8 -Tracer mode

MOSAIC 8 bin

Total time: 132

What makes WRF-Chem expensive?

Question: Which Chemistry?

Example o1 – Dust

Chem_opt = 401

Dust Option = 1 GOCART

Total time: 132

Chem_opt = 8 - Chemistry MOSAIC 8 bin

Total time: 2550

Transport in WRF and WRF-Chem

- Until recently, many weather models did not conserve moisture because of the numerical challenges in advection schemes. high bias in precipitation
- WRF-ARW is conservative but not all of the advection schemes are.
- This introduces new masses to the system.

Advection schemes can introduce both positive and negative errors particularly at sharp gradients.

Advection options in WRF

High number of explicit IFs are causing high branch mispredictions

Positive Define Advection Scheme Optimization

Hotspot

Positive Definite Delimiter (32 lines)

High Time

High cache misses (both L1 and L2 Cache misses)

High branch miss-prediction

Optimization Solution

Restructure and split the PD delimiter loop

Increase vectorization

Reduce cache misses

These optimizations are now included in the WRF original source code and available to public since V3.9 release.

Compiler	Optimization Flag	Loop Speed-up	Kernel Speed-up
Intel(v16.0.2)	-O ₃	100%	~17%
GNU (v6.1.0)	-Ofast	105%	~11%
PGI (v16.5)	-O3	35%	~4%

Summary

- Benchmarking: Do some benchmark runs to estimate the number of core-hours you will need for each planned simulation.
- □ **Scaling:** Find the optimum number of nodes with scaling.
- Profiling: WRF with Intel Vtune XE, TAU tools, and Allinea MAP for identifying the hotspots of WRF
- Optimizing: the identified hotspots of different advection schemes for Intel, GNU, and PGI compilers
 - Significant speed-up of the advection schemes
- Integration: The changes to WRF advection schemes are approved by the WRF committee and integrated in the main WRF repository.